Discrete-Time Model Predictive Control

نویسندگان

  • Li Dai
  • Yuanqing Xia
  • Mengyin Fu
  • Magdi S. Mahmoud
چکیده

The focus of this chapter is on MPC of constrained dynamic systems, both linear and nonlin‐ ear, to illuminate the ability of MPC to handle constraints that makes it so attractive to in‐ dustry. We first give an overview of the origin of MPC and introduce the definitions, characteristics, mathematical formulation and properties underlying the MPC. Furthermore, MPC methods for linear or nonlinear systems are developed by assuming that the plant un‐ der control is described by a discrete-time one. Although continuous-time representation would be more natural, since the plant model is usually derived by resorting to first princi‐ ples equations, it results in a more difficult development of the MPC control law, since it in principle calls for the solution of a functional optimization problem. As a matter of fact, the performance index to be minimized is defined in a continuous-time setting and the overall optimization procedure is assumed to be continuously repeated after any vanishingly small sampling time, which often turns out to be a computationally intractable task. On the con‐ trary, MPC algorithms based on discrete-time system representation are computationally simpler. The system to be controlled which usually described, or approximated by an ordi‐ nary differential equation is usually modeled by a difference equation in the MPC literature since the control is normally piecewise constant. Hence, we concentrate our attention from now onwards on results related to discrete-time systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Model Predictive Control for a Class of Discrete Nonlinear systems

This paper presents a robust model predictive control scheme for a class of discrete-time nonlinear systems subject to state and input constraints. Each subsystem is composed of a nominal LTI part and an additive uncertain non-linear time-varying function which satisfies a quadratic constraint. Using the dual-mode MPC stability theory, a sufficient condition is constructed for synthesizing the ...

متن کامل

Scaling, Modeling and Traffic Control of a Real Railway Network using Max-plus Algebra and Model Predictive Control

Delay time recovery can increase the efficiency of the railway network and increase the attractiveness of railway transport against other transportation systems. This article presents a new dynamical model of railway system. The proposed model is a discrete event systems that is defined based on the deviation of travel time and deviation of stop time of trains. Due to the existence of multiple ...

متن کامل

Power injection of renewable energy sources using modified model predictive control

This paper presents a simple model predictive control (MPC) approach to control the power injection system (PIS) for renewable energy applications. A DC voltage source and a single-phase inverter that is connected to the grid by an LCL filter form the PIS. Grid voltage is considered a disturbance for the system. For eliminating this disturbance, a modified model is proposed. It is usual to ...

متن کامل

Power injection of renewable energy sources using modified model predictive control

This paper presents a simple model predictive control (MPC) approach to control the power injection system (PIS) for renewable energy applications. A DC voltage source and a single-phase inverter that is connected to the grid by an LCL filter form the PIS. Grid voltage is considered a disturbance for the system. For eliminating this disturbance, a modified model is proposed. It is usual to ...

متن کامل

Discrete time robust control of robot manipulators in the task space using adaptive fuzzy estimator

This paper presents a discrete-time robust control for electrically driven robot manipulators in the task space. A novel discrete-time model-free control law is proposed by employing an adaptive fuzzy estimator for the compensation of the uncertainty including model uncertainty, external disturbances and discretization error. Parameters of the fuzzy estimator are adapted to minimize the estimat...

متن کامل

Discrete-time repetitive optimal control: Robotic manipulators

This paper proposes a discrete-time repetitive optimal control of electrically driven robotic manipulators using an uncertainty estimator. The proposed control method can be used for performing repetitive motion, which covers many industrial applications of robotic manipulators. This kind of control law is in the class of torque-based control in which the joint torques are generated by permanen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012